
PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Crossover phenomenon in self-organized critical sandpile models

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 10 April 2000!

We consider a stochastic sandpile where the sand grains of unstable sites are randomly distributed to the
nearest neighbors. Increasing the value of the threshold condition the stochastic character of the distribution is
lost and a crossover to the scaling behavior of a different sandpile model takes place where the sand grains are
equally transferred to the nearest neighbors. The crossover behavior is analyzed numerically in detail; espe-
cially we consider the exponents which determine the scaling behavior.

PACS number~s!: 64.60.Ht, 05.65.1b, 05.40.2a
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I. INTRODUCTION

Crossovers between different universality classes are
known from equilibrium phase transitions. Similar crossov
phenomena are also known from nonequilibrium syste
which exhibit self-organized criticality@1#. For instance the
forest-fire model of Drossel and Schwabl@2# displays a
crossover to a percolationlike scaling behavior if one int
duces an immunity parameter which prevents trees fr
burning @3#. Another example is the directed Abelian san
pile model of Dhar and Ramaswamy@4#. Introducing a sec-
ond stochastic toppling condition the system changes
directed percolationlike scaling behavior@5#.

In this paper we investigate a crossover between the
chastic sandpile model introduced by Manna@6# and the
Zhang sandpile model@7#. Following Ben-Hur and Biham
@8# the crossover connects the different universality clas
of undirected sandpile models~the energy or sand-grai
transfer of the nearest neighbors is isotropic, e.g., the Zh
model! and undirected on average sandpile models~the en-
ergy transfer is isotropic on average only, e.g., the Ma
model!. Considering the Manna model the crossover ta
place just by increasing the threshold value which de
mines the dynamics; i.e., no additional parameter has to
introduced.

In the next section we briefly review the distinctive cha
acteristics of the Zhang model. These characteristics will
low us in the following to identify the typical Zhang scalin
behavior. Then we describe in Sec. III the Manna model
different values of the threshold condition. The crosso
behavior between both models is investigated in Sec. IV
summary closes the paper.

II. ZHANG MODEL

Consider the Zhang model@7# on a two-dimensiona
square lattice of linear sizeL. A continuous valueEr>0
representing the energy is associated with each lattice sir .
A configuration$Er% is stable ifEr,Ec for all lattice sitesr .
For the sake of simplicity we choose in all simulationsEc
51. A quantum of energyd is added to a randomly chose
lattice siter , i.e.,
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Er→Er1d. ~1!

We consider in this work especially the slow driving lim
d!Ec . Ford→0 all lattice sites grow parallel and the Zhan
model corresponds to the conservative limit of the ‘‘spri
block’’ model of Christensen and Olami@9#.

In the case that due to the perturbation a site exceeds
critical valueEc an activation event will occur, the unstab
site relaxes to zero, and the energy is added to the nea
neighbors, i.e.,

Er→0, ~2!

Er ,NN→Er ,NN1
Er

4
. ~3!

The transferred energy may activate the neighboring s
and thus an avalanche of relaxation events may take pl
Energy may leave the system only at the boundary. Since
energy of unstable sites is equally transfered to the nea
neighbors, it was argued that the Zhang model belongs to
universality class of undirected sandpile models@8#. It was
expected that the Zhang model and the well-known B
Tang-Wiesenfeld~BTW! model @1# belong to the same uni
versality class. But the scaling behavior of the BTW av
lanches is complex and is not understood. Although m
authors agree upon a breakdown of simple scaling, the in
pretation of the numerically obtained data is still controv
sial among the different groups~see, for instance,@10–13#!.
However, we use in the following the classification ansatz
@8# and denote the universality class of the Zhang mode
the class of undirected sandpile models.

The avalanches are characterized by several phys
properties like the sizes ~number of relaxation events!, the
areaa ~number of distinct toppled sites!, the timet ~number
of parallel updates until the configuration is stable!, the ra-
dius r ~radius of gyration!, etc. In the critical steady state th
corresponding probability distributions should obey t
power-law behavior@1#

Px~x!;x2tx ~4!

characterized by the avalanche exponentstx with x
P$s,a,t,r %.
6149 ©2000 The American Physical Society
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6150 PRE 62S. LÜBECK
The Zhang model was intensively investigated in the l
years~see, for instance,@7,14–18#!. A characteristic property
of the Zhang model is the concentration of the steady-s
energy distributionp(E) aroundz distinct peaks, wherez is
the number of nearest neighbors of the lattice@7,14,15,17#.
The peaks are located at multiples of (z11)/z2 and the
height of the peaks diverges in the thermodynamic limitL
→` ~see@17# and references therein!. In the case of an in-
finite lattice the energy distribution is given by

p~E!5(
i 50

z21

f id~E2Ei !, ~5!

where f i denotes the statistical weight andEi denotes the
position of each peak. It was found numerically that the s
tistical weights are independent of the input energyd @17#.
Thus the statistical weights can be regarded as another
gerprint of the Zhang model.

Analyzing the numerically obtained avalanche distrib
tions @Eq. ~4!# it was observed that the avalanche expone
of the Zhang model exhibit finite-size corrections accord
to @17,18#

tx~L !5tx2
constx

L
. ~6!

In this case the values of the infinite latticetx are obtained
by an extrapolation toL→`. More than the explicit values
of the exponents this characteristic system size depend
allows us in the following to identify the Zhang-like scalin
behavior.

III. MANNA MODEL

A stochastic sandpile model in which integer values r
resent local energies~or number of sand-grains! was intro-
duced by Manna@6#. Here, unstable sites relax to zero
Er>Ec and the removed energy is randomly distributed
the nearest neighbors in the way that one chooses rand
for each energy unit~one sand grain! one neighbor. Thus the
Manna model is characterized by a stochastic energy tran
and according to@8# it belongs to the so-called universalit
class of undirected on average sandpile models.

Due to the reduction of the energy of unstable sites
zero, both the Zhang and the Manna model are non-Abe
models@19#, i.e., the stable energy configurations depend
the sequence in which unstable sites are toppled. Rece
Dhar introduced an Abelian version of the two-dimensio
Manna model where the energy of critical sites is not
duced to zero butEi , j→Ei , j22. The energyDE52 is then
equally distributed with probability 1/2 to the sites (i 61,j )
or otherwise to the sites (i , j 61) @20#. In this case it is pos-
sible to extend an operator algebra, which was success
applied in studying the Bak-Tang-Wiesenfeld model@19#, to
this modified Manna model.

In contrast to this analytically tractable Abelian Man
model we consider in this paper the original Manna mo
(Er→0). Numerous numerical analysis of the Manna mo
were performed forEc52 and the values of the exponen
are known within some error-bars~see, for instance
@6,8,12,21# and references therein!. Usually one assumes tha
t
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the value of the critical energyEc has no influence on the
scaling behavior of the model~see, for instance,@8,21#! and
indeed the analysis of the avalanche probability distributio
@Eq. ~4!# for EcP$2,3,5,10% reveals that the exponents a
independent ofEc ~see Fig. 1 in Ref.@21#!. But as we will
see, a crossover to a different universality takes place
sufficiently large values of the critical energy.

Consider the Manna model on a lattice withz nearest
neighbors. Assume that a given siter exceeds the critica
value, i.e.,Er>Ec . Thus a toppling process takes place a
the unstable energyEr is randomly distributed to the neare
neighbors. A given neighbor ofr get n energy units and the
corresponding probability distribution is

P~n,Er !5 S Er

n D pnqEr, ~7!

with p51/z and q512p. The corresponding expectatio
value of the energy transfer ism5pEr and its variances
5ApqEr . One can therefore distinguish between two
gimes: for small values ofEr the expectation value is of th
same order as the variance (m's) i.e., the energy transfer to
the nearest neighbors is characterized by strong fluctuati
With increasing unstable energies the fluctuations decre
and they can be neglected ifm@s for large values ofEr .

Since the value of the unstable energyEr is of the same
order as the critical energyEc , we introduce the crossove
parameterK5A(z21)/Ec. As long as the fluctuations ar
relevant,K'1, we expect that the scaling behavior agre
with that of the Manna model for smallEc . Increasing the
threshold valueEc the fluctuations become irrelevant ifK
!1. In this case the energy is nearly equally distributed
the nearest neighbors and the model corresponds to
Zhang model in the limitd!Ec . Thus we expect that a
crossover from Manna to Zhang scaling behavior takes p
if one increases the value of the critical energy. The det
of this crossover are investigated in the next section.

IV. CROSSOVER BEHAVIOR

A. Energy distribution and energy correlations

In this subsection we investigate the static properties
the Manna model for various values of the critical ener
Ec . We show that the crossover affects the distribution of
energies and its scaling behavior as well as the spatial
relations of the energies.

We measured the average energy in the steady state,

^E&L5K L22(
i , j

Ei , j L ~8!

for various values ofL and Ec . Figure 1 shows the system
size dependence of the average energy^E&L for three differ-
ent values ofEc . For all values ofEc considered we ob-
served that the system size dependence of the average e
is given by

^E&L5^E&L→`2const/L. ~9!

This behavior was already found by Manna forEc52 @6#
and it is also known from the Bak-Tang-Wiesenfeld mod
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@22#. The origin of this system size dependence is bound
effects. The average energy on the boundary is smaller
the energy in the bulk and the relative number of bound
sites scales asL21.

The extrapolation toL→` yields the average energy o
the infinite system size and the obtained values are show
Fig. 2 as a function ofEc . Increasing the critical energy from
Ec52 the average energŷE&L→` decreases and reaches
minimum for Ec'100. Here the behavior changes and t
average energy increases with the critical energy. For la
values ofEc the average energy saturates in the vicinity
the value of the Zhang model. A detailed analysis sugg
that the dependence of average energy onEc is given by

FIG. 1. The average energy in the steady state^E&L as a func-
tion of the inverse system sizeL for different values ofEc . The
extrapolation to the vertical axis yields the value of the aver
energy forL→`.

FIG. 2. The average energy in the steady state^E&L→` as a
function of the critical energyEc . The inset displays the averag
energy vs 1/Ec for Ec>350. The corresponding value of the pu
Zhang model is marked asEc5` and as an open circle~inset!,
respectively.
ry
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^E&L→`5^E&Zhang2const/Ec ~10!

for Ec>350 ~see inset of Fig. 2!. Since finite values of the
critical energy result in finite fluctuations, we get from E
~10! that the average energy is affected by these fluctuat
even for very large values ofEc .

After the average value of the energy we consider now
steady-state distributionp(E) of the energies. In Fig. 3 we
plot p(E) for various values ofEc . With increasing critical
energy a peak structure appears with four distinct peaks
cated atEi55/16i with i 50,1,2,3. Thus the positions of th
peaks agree with the corresponding values of the Zh
model ~see@17# and reference therein!.

A similar analysis on a honeycomb lattice is shown
Fig. 4. Here the probability distribution is characterized

e

FIG. 3. The energy probability distributionp(E) for L5128
and various values ofEc . To guide the eye solid lines are plotte
instead of symbols. Normalizingp(E) to Ec allows one to illustrate
how the peak structure of the distribution appears with increas
critical energy. This is shown in the lower right figure forEc

550,500,10 000. The vertical solid lines correspond to the posi
of the peaks of the Zhang modelEi55/16i with i 50,1,2,3 @17#.

FIG. 4. Analogous to Fig. 3 but for a honeycomb lattice. T
vertical solid lines correspond to the position of the peaks of
Zhang modelEi54/9 i with i 50,1,2 @17#.
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6152 PRE 62S. LÜBECK
three peaks (z53) located at multiples ofE54/9. Again
these values are in agreement with those of the Zhang mo

It is known from the Zhang model that the maxima of t
energy distributionp(E) increase with the system size an
that p(E) is characterized byz d peaks forL→` @17#.
Therefore we measured the probability distributionp(E) for
a large but fixed critical energy (Ec5104) and for various
system sizes. In Fig. 5 we present the rescaled distribu
Lyp(E) as a function ofL2y(E2Ei) around the first peak a
E155/16. The resulting data collapse shows that similar
the pure Zhang model the peak diverges forL→`. But in
contrast to the pure Zhang model where the finite-size
havior of p(E) is characterized by an exponenty'0.6 @17#
we get forEc5104 the significantly different valuey50.27
60.1. Similar results are obtained for the second and th
peaks~not shown!. Further investigations have to show if th
finite-size scaling exponenty depends onEc , i.e., if y tends
to 0.6 forEc→`.

But nevertheless the finite-size scaling analysis of
probability distribution yields thatp(E) is characterized by
four d peaks@Eq. ~5!# and one can compare the statistic
weight f i of each peak with the values of the pure Zha
model. Therefore we divided the interval@0,Ec# into four
parts and measured in each part the area under the c
p(E) for various system sizes. The values off 0 and f 2 are
shown in the inset of Fig. 5 as a function of the inver
system size. The same system size dependence was obs
for the pure Zhang model@17#. The extrapolation toL→`
yields the statistical weightsf i and the obtained values agre
with those of the Zhang model~see vertical axis of the inse
of Fig. 5!.

Finally we consider in this section the energy correlatio
in the steady state. The correlation function is defined as

C~r !5
^Er 8 Er 81r&2^Er 8&^Er 81r&

~Ec21!2
. ~11!

FIG. 5. The finite-size scaling plot of the first maximum of th
energy distributionp(E). The inset displays the statistical weigh
f 0 and f 2 as a function of the inverse system size. The values of
infinite system~extrapolation to the vertical axis! agree with those
of the Zhang model~open symbols! obtained from@17#.
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In Fig. 6 we plotC(r ) along the symmetry axis of the squa
lattice. Starting from the autocorrelation peaks atr 50 the
energies of neighboring sites (r 51) display an anticorre-
lated behavior. This is caused by the toppling events and
typical property of sandpile models where the energy of
stable sites is reduced to zero. In the inset of Fig. 6 we p
the energy correlations for the distancer 52 as a function of
Ec andK, respectively. For small values ofEc we get nega-
tive correlations which increase with the critical energy.
the surrounding area ofK!'0.15 the behavior changes from
an anticorrelated behavior (C,0) to a correlated behavio
(C.0). Positive correlations between sites of the same s
lattice (r 52) are a typical feature of sandpile models wi
an isotropic energy transfer to the nearest neighbors. T
positive correlations within a sublattice indicate a Zhang-l
behavior whereas negative correlations are a characterist
the Manna model. The analysis of the avalanche distributi
in the next subsection reveals that the model exhibits
typical Manna scaling behavior~for Ec52) as long as the
energies are anticorrelated, i.e., the scaling behavior cha
above the valueK!.

B. Avalanche distributions

In the following we consider the avalanche distributio
@Eq. ~4!# and examine the behavior of the corresponding
ponentstx as a function of the critical energy. Using th
reported values of the exponents of the Zhang and Ma
~for Ec52) models@6,17,12,21# we expect that the differ-
ence is nearly 1% for the size exponentts , less than 2% for
ta , and nearly 5% for the radius exponentt r . In the case of
the duration exponent it seems that both models are cha
terized by the valuet t'3/2. In the following we analyze the
size and radius exponents. The exponents are obtained
a regression analysis of the corresponding probability dis
bution.

In Fig. 7 we plot the exponentt r for different values of
the system sizeL and different critical energiesEc ~see also
Table I!. One can distinguish between three regimes:

e

FIG. 6. The correlation functionC(r ) for different values of the
critical energyEc . The inset displays the valueC(r 52) which is
an indicator for the crossover from the Manna scaling behav
@C(r 52),0# to the Zhang scaling behavior@C(r 52).0#.
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small values of the critical energy (Ec&100) the exponents
are independent ofEc and display no significant system siz
dependence. This is the regime of the Manna universa
class and the obtained results agree with the observed
versal behavior forEc<10 in @21#.

For large values of the critical energy (Ec*5000) another
regime occurs where the exponents are nearly independe
Ec but display a significant system size dependence. Th
system size dependences agree with the observedL depen-
dence of the Zhang model@Eq. ~6!#. Thus we recover the
third fingerprint of the Zhang model for sufficiently larg
values ofEc . We call this regime in the following the Zhan

FIG. 7. The avalanche exponentt r as a function of the critical
energyEc and the crossover parameterK, respectively. The dashe
lines indicate the value of the Manna model forEc52 ~upper! and
the Zhang model~lower!. The corresponding value of the pur
Zhang model is marked asEc5`.

TABLE I. Some values of the avalanche radius exponentt r for
various values of the critical energyEc and different sizesL of the
square lattice. The corresponding value of the pure Zhang mod
marked asEc5`.

Ec L5256 L5512 L51024

2 1.769 1.748 1.737
5 1.752 1.732
10 1.747 1.777
20 1.740 1.735
50 1.755 1.738
100 1.752 1.736
200 1.664 1.651
500 1.416 1.470
1000 1.475 1.535 1.581
2000 1.539 1.624 1.662
5000 1.551 1.630 1.642
10000 1.555 1.633 1.680
50000 1.547 1.634 1.668
` 1.539 1.630 1.648
ty
ni-

t of
se

regime. Between the Manna and Zhang regimes we fin
third transient regime where the exponents depend stro
on the critical energy and on the system size.

The avalanche size exponentts displays a similar behav
ior ~see Fig. 8 and Table II!. Again the Manna regime
is characterized by independent exponents. Approachin
certain value (Ec'100) the exponent depends strongly onEc
in the transient regime. In the third regime (Ec*5000) we
observe the characteristic Zhang system size depende
Thus we see that the scaling behavior corresponds to tha
the Zhang model for large but finite values of the ener
thresholdEc . This means that adding stochasticity to t

is

FIG. 8. The avalanche exponentts as a function of the critical
energyEc and the crossover parameterK, respectively. The dashe
line indicates the value of the Manna model forEc52. The corre-
sponding values of the pure Zhang model are marked asEc5`.

FIG. 9. The avalanche exponentts as a function of the scaling
parameterK for simple cubic~sc! and honeycomb~hc! lattices. The
dashed line indicates the value of the Manna model forEc52 and
the arrow marks the valueK!50.15 obtained from the analysis o
the correlation function@Eq. ~11!#.
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6154 PRE 62S. LÜBECK
toppling rules of the Zhang model does not force a chang
the universality class in all cases. Only a sufficiently lar
stochasticity is relevant; otherwise it is irrelevant and
scaling behavior is unchanged.

Considering the behavior of the exponentsts andt r in the
transient regime it seems that the exponents increase with
system size. Especially the ‘‘overshooting’’ effect decrea
with increasingL and usually one would expect that th
regime disappears forL→`. Unfortunately it is impossible
to conclude from the numerical results whether the trans
regime still exist in the thermodynamic limit. Further inve

TABLE II. Some values of the avalanche size exponentts for
various values of the critical energyEc and different sizesL of the
square lattice. The corresponding value of the pure Zhang mod
marked asEc5`.

Ec L5256 L5512 L51024

2 1.280 1.278 1.279
5 1.279 1.276
10 1.281 1.279
20 1.282 1.279
50 1.273 1.276
100 1.273 1.270
200 1.224 1.230
500 1.198 1.198
1000 1.219 1.229 1.230
2000 1.237 1.242 1.257
5000 1.247 1.253 1.261
10000 1.246 1.254 1.260
50000 1.248 1.255 1.262
` 1.247 1.255 1.260
tt
of
e
e

he
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nt

tigations are needed to answer this question seriously.
In the last figure we plot the size exponentts for two

different lattice types as a function of the crossover para
eter K ~see Fig. 9!. As one can see both curves display t
same behavior, i.e., the transition from the Manna regime
the transient regime takes place atK!'0.2, independent of
the lattice type. This value is in agreement with the va
K!'0.15 obtained from the analysis of the correlation fun
tion; i.e., the change of the scaling behavior coincides w
the change from negative to positive correlationsC(r 52).
Thus we conclude that the Manna scaling behavior
strongly connected to the anticorrelations between ne
nearest neighbors.

V. SUMMARY

We investigated the scaling behavior of the Manna mo
as a function of the threshold condition. Increasing the va
of the critical energy a crossover takes place from the u
versality class where the energy transfer is undirected
average to the universality class of an isotropic energy tra
fer ~Zhang model!. For sufficiently large thresholds all cha
acteristics of the Zhang model could be recovered, nam
the quantization, of the energy values in the steady state
statistical weights of the energy quanta in the thermo
namic limit, and the observed system size dependence o
avalanche exponents. Our analysis suggests that the sc
behavior of the stochastic sandpile model is connected to
negative correlations between next-nearest lattice sites.
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