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Crossover phenomenon in self-organized critical sandpile models

S. Libeck
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(Received 10 April 2000

We consider a stochastic sandpile where the sand grains of unstable sites are randomly distributed to the
nearest neighbors. Increasing the value of the threshold condition the stochastic character of the distribution is
lost and a crossover to the scaling behavior of a different sandpile model takes place where the sand grains are
equally transferred to the nearest neighbors. The crossover behavior is analyzed numerically in detail; espe-
cially we consider the exponents which determine the scaling behavior.

PACS numbegps): 64.60.Ht, 05.65t+b, 05.40-a

l. INTRODUCTION E,—E, +6. (1)

Crossovers between different universality classes are we{ve consider in this work especially the slow driving limit
known from equilibrium phase transitions. Similar crossovers<E_. For —0 all lattice sites grow parallel and the Zhang
phenomena are also known from nonequilibrium systemgnodel corresponds to the conservative limit of the “spring
which exhibit self-organized criticalityl]. For instance the plock” model of Christensen and Olarf@].
forest-fire model of Drossel and Schwalfl] displays a In the case that due to the perturbation a site exceeds the
crossover to a percolationlike scaling behavior if one intro-critical valueE, an activation event will occur, the unstable

duces an immunity parameter which prevents trees fromjte relaxes to zero, and the energy is added to the nearest
burning[3]. Another example is the directed Abelian sand-neighbors, i.e.,

pile model of Dhar and Ramaswan¥]. Introducing a sec-
ond stochastic toppling condition the system changes to a E,—0, )
directed percolationlike scaling behavid]. -

In this paper we investigate a crossover between the sto- E
chastic sandpile model introduced by Manf@ and the E, vn—E; nnt y 3)
Zhang sandpile moddl7]. Following Ben-Hur and Biham - - 4
[8] the crossover connects the different universality classes
of undirected sandpile model@he energy or sand-grain The transferred energy may activate the neighboring sites
transfer of the nearest neighbors is isotropic, e.g., the Zhangnd thus an avalanche of relaxation events may take place.
mode) and undirected on average sandpile modeie en- Energy may leave the system only at the boundary. Since the
ergy transfer is isotropic on average only, e.g., the Mann&nergy of unstable sites is equally transfered to the nearest
mode). Considering the Manna model the crossover takesieighbors, it was argued that the Zhang model belongs to the
place just by increasing the threshold value which deteruniversality class of undirected sandpile modd} It was
mines the dynamics; i.e., no additional parameter has to bexpected that the Zhang model and the well-known Bak-
introduced. Tang-WiesenfeldBTW) model[1] belong to the same uni-

In the next section we briefly review the distinctive char- versality class. But the scaling behavior of the BTW ava-
acteristics of the Zhang model. These characteristics will allanches is complex and is not understood. Although most
low us in the following to identify the typical Zhang scaling authors agree upon a breakdown of simple scaling, the inter-
behavior. Then we describe in Sec. Ill the Manna model fopretation of the numerically obtained data is still controver-
different values of the threshold condition. The crossovessial among the different grougisee, for instancg10—13).
behavior between both models is investigated in Sec. IV. AHowever, we use in the following the classification ansatz of
summary closes the paper. [8] and denote the universality class of the Zhang model as
the class of undirected sandpile models.

The avalanches are characterized by several physical
properties like the size (number of relaxation eventsthe

Consider the Zhang moddl7] on a two-dimensional areaa (number of distinct toppled sitgsthe timet (number
square lattice of linear size. A continuous valueE, =0  of parallel updates until the configuration is stablibie ra-
representing the energy is associated with each lattice site diusr (radius of gyration, etc. In the critical steady state the
A configuration{E,} is stable ifE,<E, for all lattice siteg. ~ corresponding probability distributions should obey the
For the sake of simplicity we choose in all simulatioes ~ Power-law behaviof1]
=1. A quantum of energy is added to a randomly chosen
lattice siter, i.e., Py(X)~x""x (4)

Il. ZHANG MODEL

characterized by the avalanche exponents with x
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The Zhang model was intensively investigated in the lasthe value of the critical energl, has no influence on the
years(see, for instancéy,14—-1§). A characteristic property scaling behavior of the modésee, for instancd8,21]) and
of the Zhang model is the concentration of the steady-statgdeed the analysis of the avalanche probability distributions
energy distributiorp(E) aroundz distinct peaks, whereis  [Eq. (4)] for E.{2,3,5,10 reveals that the exponents are
the number of nearest neighbors of the latfi¢gl4,15,1T.  independent of, (see Fig. 1 in Ref[21]). But as we will
The peaks are located at multiples af+(1)/z° and the see, a crossover to a different universality takes place for
height of the peaks diverges in the thermodynamic limit sufficiently large values of the critical energy.
—o (see[17] and references therginin the case of an in- Consider the Manna model on a lattice withnearest
finite lattice the energy distribution is given by neighbors. Assume that a given siteexceeds the critical
value, i.e..E,=E;. Thus a toppling process takes place and
the unstable energy, is randomly distributed to the nearest
P(E)= i:zo fio(E=Ey), ®) neighbors. A given neighbor of getn energy units and the
corresponding probability distribution is
where f; denotes the statistical weight aiy denotes the
position of each peak. It was found numerically that the sta- P(nE,)= (EL) p"qEr @)
tistical weights are independent of the input enefyy17]. L n "

Thus the statistical weights can be regarded as another fin-, ) )
gerprint of the Zhang model. with p=1/z and g=1—-p. Thg correspond!ng expectation
Analyzing the numerically obtained avalanche distribu-value of the energy transfer jg=pE, and its variancer
tions[Eq. (4)] it was observed that the avalanche exponents= VPAE;. One can therefore distinguish between two re-
of the Zhang model exhibit finite-size corrections accordinggimes: for small values d&, the expectation value is of the

z—1

to [17,18 same order as the variance+ o) i.e., the energy transfer to
the nearest neighbors is characterized by strong fluctuations.
cons}, With increasing unstable energies the fluctuations decrease
(L) =7y~ L - ®  and they can be neglected,if> o for large values oE, .

Since the value of the unstable eneigyis of the same
In this case the values of the infinite lattieg are obtained order as the critical energl., we introduce the crossover
by an extrapolation td. — . More than the explicit values parameterK = \/(z—1)/E.. As long as the fluctuations are
of the exponents this characteristic system size dependencelevant,K~1, we expect that the scaling behavior agrees
allows us in the following to identify the Zhang-like scaling with that of the Manna model for smalll;. Increasing the
behavior. threshold valueE, the fluctuations become irrelevant Kf
<1. In this case the energy is nearly equally distributed to
I1l. MANNA MODEL the nearest neighbors and the model corresponds to the
Zhang model in the limit6<E;. Thus we expect that a
A stochastic sandpile model in which integer values repcrossover from Manna to Zhang scaling behavior takes place
resent local energie®r number of sand-graipsvas intro-  if one increases the value of the critical energy. The details

duced by Manng6]. Here, unstable sites relax to zero if of this crossover are investigated in the next section.
E,=E. and the removed energy is randomly distributed to

the nearest neighb_ors in the way that one chooses randomly IV. CROSSOVER BEHAVIOR
for each energy unifone sand grainone neighbor. Thus the S _
Manna model is characterized by a stochastic energy transfer A. Energy distribution and energy correlations

and according t¢8] it belongs to the so-called universality | this subsection we investigate the static properties of

class of undirected on average sandpile models. the Manna model for various values of the critical energy

Due to the reduction of the energy of unstable sites tq-  \ye show that the crossover affects the distribution of the
zero, both the Zhang and the Manna model are non-Abeliagnergies and its scaling behavior as well as the spatial cor-
models[19], i.e., the stable energy configurations depend ohg|ations of the energies.

the sequence in which unstable sites are toppled. Recently \y/e measured the average energy in the steady state,
Dhar introduced an Abelian version of the two-dimensional

Manna model where the energy of critical sites is not re- 72

duced to zero bu; ;—E; ;—2. The energyAE=2 is then (E)=(L IEJ Ei | ®)
equally distributed with probability 1/2 to the sitesH1,j) '

or otherwise to the sited (1) [20]. In this case it is pos-  for various values of. andE.. Figure 1 shows the system
sible to extend an operator algebra, which was successfullyjze dependence of the average enéfgy for three differ-
applied in studying the Bak-Tang-Wiesenfeld mofded], to ent values ofE,. For all values ofE, considered we ob-

this modified Manna model. . served that the system size dependence of the average energy
In contrast to this analytically tractable Abelian Mannais given by

model we consider in this paper the original Manna model

(E;—0). Numerous numerical analysis of the Manna model (E) =(E)__,..—constL. (9)
were performed folE.=2 and the values of the exponents

are known within some error-bargsee, for instance, This behavior was already found by Manna f&f=2 [6]
[6,8,12,21 and references thergirlJsually one assumes that and it is also known from the Bak-Tang-Wiesenfeld model



PRE 62 CROSSOVER PHENOMENON IN SELF-ORGANIZE. . . 6151
0.70 0.30 : . 0.08 :
E,=5,10,20 E=50
0.06
«E=2 0.20 | ]
0.68 [ Q
"E=5 = 1 g oos
CE=10 0.10 \// 02
0.66 i 0.00 A 0.00
00 02 04 06 08 1.0 0.0
3 E/E-1)
=
0.64 - | 0.010 — 10.0
E,=1000
o
0.62 N 7 S( 0.005 | g 5.0
/\/\ Q
0.60 0.000 /\\ 0.0

0.020 0.030

1/L

FIG. 1. The average energy in the steady s{&g as a func- FIG. 3. The energy probability distributiop(E) for L=128
tion of the inverse system side for different values ofE.. The and various values dE;. To guide the eye solid lines are plotted
extrapolation to the vertical axis yields the value of the averagdnstead of symbols. Normalizing(E) to E. allows one to illustrate
energy forL — . how the peak structure of the distribution appears with increasing

critical energy. This is shown in the lower right figure f&r,
[22]. The origin of this system size dependence is boundary 50,500,10 000. The vertical solid Iines_ co_rre§pond to the position
effects. The average energy on the boundary is smaller that] the Peaks of the Zhang modg|=5/16i with i=0,1,2,3[17].
the energy in the bulk and the relative number of boundary
sites scales as 1.

The extrapolation td.—c< yields the average energy of
the infinite system size and the obtained values are shown ifor E.=350 (see inset of Fig. 2 Since finite values of the
Fig. 2 as a function oE. Increasing the critical energy from critical energy result in finite fluctuations, we get from Eq.
E.=2 the average energ}E), _,.. decreases and reaches a(10) that the average energy is affected by these fluctuations
minimum for E;~100. Here the behavior changes and theeven for very large values ..
average energy increases with the critical energy. For large After the average value of the energy we consider now the
values ofE, the average energy saturates in the vicinity ofsteady-state distributiop(E) of the energies. In Fig. 3 we
the value of the Zhang model. A detailed analysis suggestglot p(E) for various values of.. With increasing critical
that the dependence of average energygiis given by energy a peak structure appears with four distinct peaks lo-

cated atE;=5/16i with i=0,1,2,3. Thus the positions of the
K peaks agree with the corresponding values of the Zhang
model (see[17] and reference therein
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FIG. 2. The average energy in the steady stdE® .. as a © O EEA) O EEA)

function of the critical energf.. The inset displays the average
energy vs 1, for E.=350. The corresponding value of the pure
Zhang model is marked a@8.=« and as an open circlénse),
respectively.

FIG. 4. Analogous to Fig. 3 but for a honeycomb lattice. The
vertical solid lines correspond to the position of the peaks of the
Zhang modeE;=4/9i with i=0,1,2[17].
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FIG. 6. The correlation functio@(r) for different values of the
FIG. 5. The finite-size scaling plot of the first maximum of the critical energyE.. The inset displays the valug(r =2) which is
energy distributiorp(E). The inset displays the statistical weights an indicator for the crossover from the Manna scaling behavior
fp andf, as a function of the inverse system size. The values of th¢ C(r =2)<0] to the Zhang scaling behavipC(r =2)>0].
infinite system(extrapolation to the vertical axisgree with those

of the Zhang mode{open symbolsobtained from(17). In Fig. 6 we plotC(r) along the symmetry axis of the square

lattice. Starting from the autocorrelation peaksr a0 the
three peaks 4=3) located at multiples 0E=4/9. Again  energies of neighboring sites £1) display an anticorre-
these values are in agreement with those of the Zhang modehted behavior. This is caused by the toppling events and is a
It is known from the Zhang model that the maxima of the typical property of sandpile models where the energy of in-
energy distributionp(E) increase with the system size and stable sites is reduced to zero. In the inset of Fig. 6 we plot
that p(E) is characterized by & peaks forL— [17].  the energy correlations for the distarce2 as a function of
Therefore we measured the probability distributj(t) for E. andK, respectively. For small values & we get nega-
a large but fixed critical energyE(=10") and for various tive correlations which increase with the critical energy. In
system sizes. In Fig. 5 we present the rescaled distributiothe surrounding area #*~0.15 the behavior changes from
LYp(E) as a function oL. "Y(E—E;) around the first peak at an anticorrelated behaviolC&0) to a correlated behavior
E,=5/16. The resulting data collapse shows that similar tq C>0). Positive correlations between sites of the same sub-
the pure Zhang model the peak diverges lfor-o. But in  |attice (r=2) are a typical feature of sandpile models with
contrast to the pure Zhang model where the finite-size bean isotropic energy transfer to the nearest neighbors. Thus
havior of p(E) is characterized by an expongnt0.6[17]  positive correlations within a sublattice indicate a Zhang-like
we get forE.=10" the significantly different valug=0.27  behavior whereas negative correlations are a characteristic of
*+0.1. Similar results are obtained for the second and thirdhe Manna model. The analysis of the avalanche distributions
peaks(not shown. Further investigations have to show if the in the next subsection reveals that the model exhibits the
finite-size scaling exponenytdepends ork, i.e., ify tends  typical Manna scaling behavidfor E.=2) as long as the
to 0.6 forE.—o. energies are anticorrelated, i.e., the scaling behavior changes
But nevertheless the finite-size scaling analysis of thebove the valud*.
probability distribution yields thap(E) is characterized by
four & peaks[Eq. (5)] and one can compare the statistical o
weight f; of each peak with the values of the pure Zhang B. Avalanche distributions
model. Therefore we divided the interved E.] into four In the following we consider the avalanche distributions
parts and measured in each part the area under the curfgq. (4)] and examine the behavior of the corresponding ex-
p(E) for various system sizes. The valuesfgfandf, are  ponentsr, as a function of the critical energy. Using the
shown in the inset of Fig. 5 as a function of the inversereported values of the exponents of the Zhang and Manna
system size. The same system size dependence was obserygfl E.=2) models[6,17,12,2] we expect that the differ-
for the pure Zhang modglL7]. The extrapolation td. —%  ence is nearly 1% for the size exponegt less than 2% for
yields the statistical weighty and the obtained values agree r_, and nearly 5% for the radius exponent In the case of
with those of the Zhang modésee vertical axis of the inset the duration exponent it seems that both models are charac-
of Fig. 5). terized by the value;~3/2. In the following we analyze the
Finally we consider in this section the energy correlationssize and radius exponents. The exponents are obtained from
in the steady state. The correlation function is defined as g regression analysis of the corresponding probability distri-
bution.
(Ev Epre )= (Ep)Ep ) In Fig. 7 we plot the exponent, for different values of
S i A St VAR i S i S VA (11)  the system sizé and different critical energie§, (see also
(E.—1)2 Table ). One can distinguish between three regimes: for

c(r)
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FIG. 7. The avalanche exponentas a function of the critical FIG. 8. The avalanche exponen{ as a function of the critical
energyE. and the crossover paramet€rrespectively. The dashed energyE. and the crossover paramet€rrespectively. The dashed
lines indicate the value of the Manna model fy=2 (uppey and line indicates the value of the Manna model f&y=2. The corre-

the Zhang modellower). The corresponding value of the pure sponding values of the pure Zhang model are markel .aso.
Zhang model is marked ds,= .

regime. Between the Manna and Zhang regimes we find a
small values of the critical energye(=100) the exponents third transient regime where the exponents depend strongly
are independent & and display no significant system size on the critical energy and on the system size.
dependence. This is the regime of the Manna universality The avalanche size exponentdisplays a similar behav-
class and the obtained results agree with the observed uripr (see Fig. 8 and Table)llAgain the Manna regime
versal behavior foE <10 in[21]. is characterized by independent exponents. Approaching a

For large values of the critical energi =5000) another certain value E.~100) the exponent depends strongly&n
regime occurs where the exponents are nearly independent if the transient regime. In the third regimg &5000) we
E. but display a significant system size dependence. Thesgbserve the characteristic Zhang system size dependence.
system size dependences agree with the obsdrvéepen- Thus we see that the scaling behavior corresponds to that of
dence of the Zhang modgEq. (6)]. Thus we recover the the Zhang model for large but finite values of the energy
third fingerprint of the Zhang model for sufficiently large thresholdE.. This means that adding stochasticity to the
values ofE;. We call this regime in the following the Zhang

1.30 T T ‘
TABLE I. Some values of the avalanche radius exponerior
various values of the critical enerdy, and different sizes of the _ g%ﬁ
square lattice. The corresponding value of the pure Zhang model is
marked afE =. ; Y
1.25 | % % 1

E. L=256 L=512 L=1024 ;
2 1.769 1.748 1.737 e }¥
5 1.752 1.732
10 1.747 1777 . E :ILF ;gg s |
20 1.740 1.735 : =290 8C
50 1.755 1.738 A L=512scC
100 1.752 1.736 Vv L=1024 sc
200 1.664 1.651 ® L=256 he
500 1.416 1.470 115 e e <
1000 1.475 1.535 1.581 10 10 10
2000 1.539 1.624 1.662 K
5000 1.551 1.630 1.642 FIG. 9. The avalanche exponentas a function of the scaling
10000 1.555 1.633 1.680 parameteK for simple cubic(sg and honeycomithc) lattices. The
50000 1.547 1.634 1.668 dashed line indicates the value of the Manna modeEg+ 2 and
o 1.539 1.630 1.648 the arrow marks the valuk*=0.15 obtained from the analysis of

the correlation functiofiEq. (11)].
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TABLE Il. Some values of the avalanche size exponentor tigations are needed to answer this question seriously.
various values of the critical enerdy, and different sizes of the In the last figure we plot the size exponent for two
square lattice. The corresponding value of the pure Zhang model igjfferent lattice types as a function of the crossover param-
marked asE.=c. eterK (see Fig. 9. As one can see both curves display the
same behavior, i.e., the transition from the Manna regime to

E L =256 L=512 L=1024 the transient regime takes placekat~0.2, independent of

2 1.280 1.278 1.279 the lattice type. This value is in agreement with the value
5 1.279 1.276 K*~0.15 obtained from the analysis of the correlation func-
10 1.281 1.279 tion; i.e., the change of the scaling behavior coincides with
20 1.282 1.279 the change from negative to positive correl_aticﬁ(sr=2)_. _
50 1.273 1.276 Thus we conclude that the Manna _scalmg behavior is
100 1973 1.270 strongly cc_mnected to the anticorrelations between next-
200 1224 1230 nearest neighbors.

500 1.198 1.198

1000 1.219 1.229 1.230 V. SUMMARY

2000 1.237 1.242 1.257 We investigated the scaling behavior of the Manna model
5000 1.247 1.253 1.261 as a function of the threshold condition. Increasing the value
10000 1.246 1.254 1.260 of the critical energy a crossover takes place from the uni-
50000 1.248 1.255 1.262 versality class where the energy transfer is undirected on
© 1.247 1.255 1.260 average to the universality class of an isotropic energy trans-

fer (Zhang model For sufficiently large thresholds all char-
_ acteristics of the Zhang model could be recovered, namely,
toppling rules of the Zhang model does not force a change ahe quantization, of the energy values in the steady state, the
the universality class in all cases. Only a sufficiently largestatistical weights of the energy quanta in the thermody-
stochasticity is relevant; otherwise it is irrelevant and thenamic limit, and the observed system size dependence of the
scaling behavior is unchanged. avalanche exponents. Our analysis suggests that the scaling
Considering the behavior of the exponengsind 7, inthe  pehavior of the stochastic sandpile model is connected to the
transient regime it seems that the exponents increase with th@zgative correlations between next-nearest lattice sites.
system size. Especially the “overshooting” effect decreases

with increasingL and usually one would expect that this
regime disappears fdr—co. Unfortunately it is impossible

to conclude from the numerical results whether the transient
regime still exist in the thermodynamic limit. Further inves- | would like to thank A. Hucht for useful discussions.
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